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Abstract 

In this paper, we compute an upper bound on 
the packet error probability induced in 
direct sequence spread spectrum networks, 
when BCH codes are used for the encoding of 
the packets. The bound, which we 
introduce, is valid independently of 
whether signals arrive with equal or 
unequal powers at the receiver site. 
Furthermore, it has a simple form and i t  is 
easy to compute. In addition to that, it 
is valid for other classes of forward error 
correction codes (e.g. convolutional 
codes), but in this paper numerical results 
are presented for BCH codes only. 

1. Introduction 
The problem of computing packet error 

probabilities in direct sequence spread 
spectrum packet radio networks is 
difficult. Packet errors are caused by a 
combination of noise at the receivers and 
interference between packet transmissions 
which overlap in time. The interference 
between packet transmissions produces 
dependent errors at the output of the 
demodulator. A lot of work has been 
directed towards the evaluation of the bit 
error probability in direct sequence spread 
spectrum networks ([l]. [a]). The 
dependency of the bit errors does not allow 
us to extend the results in [l] and [Z], in 
order to compute the packet error 
probability. 

To the best of our knowledge, the 
first serious effort to compute packet 
error probabilities in direct sequence 
spread spectrum networks was conducted in 
[4]. In [4] the authors compute an upper 
bound on the packet error probability 
induced in a direct sequence spread 
spectrum packet radio network, which 
utilizes binary convolutional coding, 

hard-decision demodulaton Viterbi decoding 
and random signature sequences. 

The upper bound on the packet error 
probability, derived in [4]. had been 
proven to be valid, only when the signals 
arrive with equal power at the receiver 
site. This is a severe limitation, 
because, in general, signals arrive at the 
receiver site with unequal powers. In this 
paper, we present an upper bound on the 
packet error probability induced in direct 
sequence spread spectrum packet radio 
networks, when BCH codes are used for the 
encoding of the packets. Our bound is 
valid independently of whether signals 
arrive with equal or unequal powers at the 
receiver site. The upper bound. which we 
introduce, has a simple form and it is easy 
to compute. In addition to that, it is 
valid for other classes of codes (e.g. 
convolutional codes), but in this paper 
numerical results are presented for BCH 
codes only. 

2. Model-Preliminaries 
The model for direct sequence spread 

spectrum transmission considered here is 
described in [5]. The only difference is 
that the signature sequence is assumed to 
be a sequence of independent, identically 
distributed, binary random variables, each 
equally likely to be +1 or -1. Each 
transmitter in the network has such a 
sequence, and each sequence is assumed to 
be independent of the sequences of other 
transmitters. 

Let us now assume that we have a 
slotted channel (i.e. packet transmissions 
initiate at the beginnings of slots), 
K(K>l) packet transmissions occur within a 
slot, and a receiver locks on to packet #1 
(packets are indexed #1, #2, ..., #K). Each 
packet originates from a different 
transmitter in the network. A packet is 
exactly one codeword from an (M,L) BCH code 
(&total number of codeword bits, L=total 
number of information bits; the bits of a 
codeword are indexed from 0 up to M-1. Our 
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objective is to compute the probability 
that the receiver decodes packet #1 
incorrectly. 

The receiver is assumed to be a 
correlation receiver. The output of the 
receiver, corresponding to the mth bit 
(O<m<M-1) of packet #l. is the random 
variable (see [3] for more details) 

1/2 K 
Zm=nm+(2-lP1) ‘/%{bL1 )+isz( Pi/P1) 
I;, l(ky.~i.e)} :O<m<M-l (1) 

Each n is a Gaussian random variable 

with zero mean and variance N T/4. where 
N /2 is the two sided spectral density of 
the white Gaussian noise and T is the data 
bit duration. The random variables nm 

(O<m<M-1) are independent. The random 
variable bkl) represents the mth bit of 
packet #l; its value is either +1 or -1. 
The vector by represents a pair of 
consecutive data bits of packet #i. In 
particular, bT=(bi~~.b~i)), and each data 

bit bii) is either +1 or -1. Each -ri or €Ii 
is a random variable representing the time 
delay (modulo T) or  the phase angle (modulo 
2n). respectively, of packet #i relative to 
packet 81. A s  in [3]. we take the range or  
yi to be the interval [O,T] and the range 

of 8. to be the interval [0,27r]. Finally, 
Pi is the power of packet #i at the 

receiver. 

The function IT,1. which appears in 

(1) represents the normalized multiple 
access interference due to packet #i. This 
function is defined by 

where the functions Rm and i m  are given 
1,l 1.1 

by 
R y ,  l(v)=smT ai( t-7)al(t)dt ( 3 )  

mT+7 

i y ,  1(-r)=JgIS)Tai(t-7)al(t)dt (4) 
Note that the a.(t) and the a,(t) in 

( 3 )  and (4) are the spectral spreading 
signals corresponding to packets #i and #1, 
respectively. In fact, 

a. (t)= . 3ma!i)\L( t-jTc) ; l(i<K (5) 
1 J=-O0 J 

where ragi1} is the signature sequence 

corresponding to packet #i. $(t) is the 
chip waveform, and Tc is the chip duration. 
In this paper, we assume a rectangular chip 
waveform. Hence, 

1 O<t<Tc 
\L(t)= (6) 

[0 otherwise 
The decoder decides that the mth bit 

of packet #1 is +1 or -1 if Zm>O or  Zm<O. 
respectively. It is easy to show that the 
mth bit of packet #1 is decoded correctly 
by the above decoder if and only if the 
random variable 

K 
Xm=n2[ 1+ is2b:1 ( Pi/P1 ) 

(7) (by.’i.ei)l ; O<m<M-1 

is positive. In (7). each n* is a Gaussian 

random variable with mean 0 and variance 
No/2Ej,, where Ej,=P T is the energy per data 
bit of packet #l. The random variables 
n=(O<m<M-l) are statistically independent. 

Let us now denote by S a random 
variable. which represents the number of 
random variables X,(O<m<M-l) that are 
negative . 

1 

Then, 
Pp(K)=Pr(S>e) (8) 

where e corresponds to the error correction 
capability of the BCH code. We will state 
two propostions. without proof ( f o r  more 
details see [7]). 
Proposition 1. For the computation of 
Pe(K) the yi’s (2<i<K) need be known only 
to the nearest chip. 
Proposition 2. Pe(K) is independent of the 

values of the data bit sequences {b(i) M-l m )m=o 
for l<i<K. 

An immediate consequence of 
propositions 1 and 2. is that the random 
variable X in (7) assumes the following 
equivalent form (see also (2) through (6)) 
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In (9) we assumed that each of the 
spread spectrum signals has N chips per 
bit. Let us make an important observation. 
Observation 1. Given the phase (e,) and 
the delay (T~) of each transmission 
(2<i<K), the random variables Xm(O<m<M-l) 

are not independent. 
To prove our observation we show, in 

and P /P -P /P -1 the following inequality 
is true. 
P r ( X O < ~ , < O ) # P r ( X O < O ) P r ( X 1 < O )  (10) 

In [7] we point out that f o r  some 
examples of packet radio networks the 
random variables, Xm are conditionally 

independent given all delays and phases 
(e.g. when bit interleaving is used). 
Furthermore, it is the author's belief that 
the packet error probability Pe(K) will not 
be severely affected if we treat the random 
variables X as conditionally independent, 

provided that K<<N. As a result, the 
derivation of the upper bound on the packet 
error probability P (K). presented in the 

next section, will be based on the 
following proposition 
Proposition 3 .  Given the phase (ei) and 
the delay (-ri) of each transmission 

(2<i<K), the random variables Xm(O<m<M-l) 
are independent 

3. An upper bound on the packet error 
probabilitv. 
3.a Derivaton of the upper bound 

[7] that for N=2, K=3. O2=tl3'0. y2=-r3= Tc/2 

2 1- 3 1- 

m 

Let us define the random vectors 

(11) 

7 .e  

- e = ( e e  2 3.'"K) 
7 = ( 7 7  - 2 3...7K) 
Let us denote by f ( 7 . 0 )  the joint 

A A  

- -  
probability density function of the random 
vectors 3: and e. The first step in our 
effort to compute an upper bound on P (K) 
(see (8) in section 2) is to condition on e 
(all phases) and 3: (all delays). Then, we 
get 
P (K)=.rAJA Pr(S>e/~=2,&~) 

* A  

e r e  
A A  A A 

f7, e ( 2  9 e)ded~ (12) 
Due to proposition 3 and formula (9). we 
can write 

where 

w K  112 p=Pr (XO<O)=Pr (nO+l+ L (Pin1) 
i =2 

The second step in our work is to find 
an upper bound pu on the probability p. 

which is independent of 2 and . By doing 
so,  we can upper bound g(p) (see [13]) by 
g(pu), since g(p) is an increasing function 

of p. As a result, we can write 

,. ,. 

Pe(K)<g(pu) (16) 
Let us start by defining the random 

variable Y such that 
r K  v2-0 A A 

O i=2 
Y=n +{ H (P./Pl) Ii(-ri.Oi)}-l (17) 

where 

and ;(l) corresponds to a fixed choice for 
the values of the components of the random 
vector a(l)=(a0(l)a(l1). . .dAi). 

From the total probability formula and 

the fact that n: and Ii(~i,Bi)(2<i<K) are 0 -  A 

symmetric random variables. we conclude 
that 

p= z Pr(Y>O) Pr(a(')G(l)) (19) 

all possible choices of i(l) 

a( 1)2(1) 

We now present two lemmas. which will 
help us define the upper bound p 
Lemma 1 

Pr W O )  <exp ( --z )ECexp(znz) 1 

where E denotes the expectation operator. 

Lemma 1 is a consequence of the well h o w n  
Chernoff bound and the fact that the random 

______-___ 

var iab les zo and ^O Ii(-ri.Oi) * A (2<i<K) are 
independent. A proof of Chernoff's bound 
can be found in [SI. 
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Lemma 2 
1/2̂  - - 

E{ewCz ( Pi/P2) 1 1 i ( 7  i * ei 1 11 
1/2 

<E{exp[z(Pi/P1) Ii (0.0) 1) (21 1 
:2<i<K, z)O 

Lemma 2 is proven [7]. Its proof is based 
on the increasing nature of the function 
s(t)=e +e (t>O) [i.e. as t increases 
(t>O), s(t) increases too]. 

Pr(Y>O) <exp(-z)ECexp(znt) 1 

___----__- 

t -t 

From lemmas 1 and 2 we take 

1/2 0 K 
II E{exp[z(Pi/P1) Ii(0.0)]} :z>O (22) 
i =2 

From formulas (18) and (22) we see 
that the upper bound on Pr(Y>O) does not 

depend on the specific choice of ;(I). A s  
a result (see(l9)). 

where 
N- 1 

Ji=[ .I a (i)]/N ;2<i<K (24) 
.1=0 j 

and z* the value of z, which minimizes 
v(z). We define p as follows: 

* 
pu=v(z 1 (26) 

It is then obviously true that 

(12). (13). (27). the independence of 
P~P, (27) 

A A 

pu from z and e and the increasing nature 
of g(p) allow us to write 

(28) provides us with an upper bound 
on the packet error probability P (K). We 

denote this upper bound Pu(K). 
3.b Numerical results. 

In table 1, we present the upper bound 
PE(K) on the packet error probability 

Pe(K), when all interfering signals (i.e. 
packets #2.. . . .#K) are assumed to be 0 dB. 
3 dB or 6 dB stronger than the desired 

transmission (i.e. packet #l). Results are 
presented for various K values. In table 
1, we assume a signal to noise ratio 
of 12 dB or 15 dB (note that %=PIT). and 
N=31. In table 2. similar results are 
shown for the N=127 case. The results in 
tables 1 and 2 correspond to the (1023.513) 
BCH code. The entries in tables 1 and 2, 
which are shown as upper bounds, are loose 

upper bounds of PZ(K), and their only 

purpose is to indicate the approximate 

order (in powers of 10) of P:(K). 
An important observation, stemming 

from the results shown in tables 1 and 2. 
is that the performance of direct sequence 
spread spectrum packet radio networks 
deteriorates rapidly for cases of 
interfering signals which are moderately 
stronger than the desired transmission (the 
near-far problem). 

4. Conclusions 
We presented an upper bound on the 

packet error probability induced in direct 
sequence spread spectrum packet radio 
networks. A n  important advantage of the 
bound pu. derived in section 3 is that its 
validity does not rely on any assumptions 
about the joint probability density 
function fT,o of all delays and phases 
(e.g. independence of the delays and 
phases). The only assumption that we used 
for the derivation of p is that each delay 
and phase includes in its range the zero 
value. Furthermore. the form of the bound 
pu is simple and easily computable (see 

(25) and (26)). Once pu is calculated, the 
computation of P (K) for BCH codes becomes 
a straightforward task (see formula (28)). 
More importantly. our presentation in 
section 3 has shown that the upper bound on 
the packet error probability is valid 
independently of whether signals arrive 
with equal or unequal powers at the 
receiver site. 

In [7] we mention some ways of 
improving the upper bound of section 3 at 
the expense of increased computational 
complexity. We are currently examining the 
improvement of the bound, as well as. its 
applicability to other types of forward 
error correction codes (e.g. convolutional 
codes). 

E b m O  
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Table 1 

The upper bound PZ(K) on the packet 

error probability P (K). 
E,,/N =I2 dB; N=31 

O d B  3dB 6dB 

P:(K) K p p  K P p )  
2.32D-11 2 <1.0D-41 2 8.73D-03 
2.81D-02 3 1.83D-02 

E,,/N0=15 dB; N=31 

O d B  3dB 6dB 

Plp) K p:(K) K p p )  
<1.0D-57 2 <1.0D-57 2 5.8113-07 
2.62D-14 3 3.88D-06 
1.11D-05 

K 
9 
10 
11 
12 
13 
14 
15 

K 
10 
11 
12 
13 
14 
15 

TabLe 2 

The upper bound PE(K) on the packet 
error probability P,(K) 
E,,/N0=12 dB; N=127 

OdB 3dB 6dB 

P p )  K QK) K P y )  
<1.0D-40 5 <1.0D-41 3 <1.0D-41 
<1.0D-30 6 <1.0D-22 4 2.03D-13 
<1.OD-22 7 3.18D-13 5 9.81D-03 
<1.0D-16 8 1.88D-06 
4.79D-13 9 l.llD-02 
2.95D-9 
2.5606 

E,,/N =15 dB; N=127 

O d B  3dB 6dB 

p p )  K P p )  K P:(K) 
<1.0D-52 6 <1.OD-40 3 <1.0D-57 
<1.0D-40 7 <1.0D-22 4 <1.OD-23 
<1.0D-30 8 3.11D-13 5 1.4OD-06 
<1.oD-22 9 1.85D-06 
<1.0D-16 10 1.1OD-02 
5.llD-13 
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